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Abstract. The critical temperature of a three-dimensional Ising model on a simple cubic lattice
with different coupling strengths along all three spatial directions is calculated via the transfer
matrix method and a finite-size scaling for L x L x co clusters (L = 2 and 3). The resuls
cbtained arc compared with available calculations. An exact analytical solution is found for the
2 % 2 x oo Isitg chain with fully anisotropic interactions {arbitrary J, J, and J,).

1. Introduction

Great attention has been given to the critical temperature calculation of the thres-dimensional
Ising model, for the full time extent of its existence. The most considerable advances
have been attained for the fully isotropic cubic lattice (J, = J, = J;). The calculations
are steadily improving with time; the accuracy for the critical point value is down to
1073% error: K, = 0.2216595 + 0.0000026 (Ferrenberg and Landau 1991); K. =
0.221 6544 4 0.000001 0 (Livet 1991).

The efficiency of progress is less for the partly anisotropic model when J; = J, # J,.
Two cases exist here: J, = J, > J; (a quasi-two-dimensional model) and, inversely,
Jy = J; < J; (a quasi-one-dimensional model). Using the high-temperature series, the
critical temperature estimates have been obtained with 2 x 1072% error for the fully isotropic
interactions (J, = J, = J;) and about 10~3% in the two-dimensional limit (J; = 0) of the
quasi-two-dimensional model (see Navarro and de Jongh (1978) and references therein).
By intermediate-range interlayer couplings, the error of a phase transition temperature
determination lies between these two extreme values. Conversely, in the quasi-one-
dimensional case, the estimates based on the same high-ternperature series rapidly deteriorate
owing to the limited number of terms available in the series. As a result, one can find
the critical temperatures only up to Jyy/J; = 1072 (with exactness in the one- to two-
significant-figure range). In the quasi-one-dimensional case, the phase transition temperature
has been calculated also by phenomenological renormalization of clusters (Yurishchev and
Sterlin 1991). Inasmuch as the cluster geometry reflects the physical situation, this approach
(contrary to the high-temperature series expansions) yields more precise results as the
anisotropy of the quasi-one-dimensional system increases. By Jy(y/J; = 1072, the critical-
temperature position is determined here with an accuracy of about three significant figures.

The difficulties are largest when the interactions are different along all three directions.
Here calculations have been done by the real-space renormalization group method (da Silva
et al 1984) and via various versions of the mean-field theory and variational principle (see
Faleiro Ferreira {1988, 1989) and references therein). These resulis we discuss in detail i m
section 3 in comparison with our computations.
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In this paper, the critical temperature of a three-dimensional Ising model, with fully
anisotropic interactions, is calculated by the transfer matrix approach in combination with
a finite-size scaling, i.e. by the phenomenological renormalization group method proposed
by Nightingale (1976). As the clusters, we use infinitely long paralielepipeds L x L x o0
with transverse scales L = 2 and 3. We succeeded in obtaining a rigorous solution for a
lattice with L = 2. For the 3 x 3 x oo lattice, we simplify the partial eigenvaiue problem
for the transfer matrix of $12th order. Using the symmetry, we reduce this problem to
a determination of the largest eigenvalues of the two eighteenth-order matrices. Final
calculations have already been made numerically.

2. Calculation of the critical temperature

Conforming with the phenomenological renormalization group theory, the critical
temperature T, is a fixed point of an equation (see, for instance, the reviews of Nightingale
(1982) and Barber (1983)):

Lic (T) = L'kep: (Ty) ‘ )
where
k= In(A/Az) )

is the inverse correlation length in a cluster with characteristic size L. The quantities A}
and A; entering into (2) are the largest and next-largest eigenvalues, respectively, of the
subsystem transfer matrix. Thus, the task is reduced to finding the dominant eigenvalues of
transfer matrices.

2.1, Cluster 2 x 2 x o0

Let us write the Hamiltonian for the cluster as
H ==Y [J:(61.02; + 0304:) + Jy(01,104 +02,03,)

“+ S (01401141 + 0202 41 + 03,05 141 + 404 441)) 3

The spin variables o = =1 are located in sites of a lattice 2 % 2 x oo which has a rectangular

cross section and has the symmetry planes going through its axis and the middles of opposite
sides.

The transfer matrix U with elements

{01, 02,03, 64|Ula], 03, 05, 6}) = exp[1 K (0102 + 0304 + 0{0} + 30,)
+ -;;Ky(o']m; + G203 + 0703 + 0303) + K (010] + 0207 + 0303 + 040,)] (4)

(where K, = J,/kT, Ky = J;/&kT and K; = J;/kT) corresponds to the Hamiltonian (3).

To solve the eigenvalue problem of the transfer matrix (4), we use first the invariance
property of the appropriate Hamiltonian with respect to the transformations of the group
Z, ® Cyy; where 7 is a group of global reflections in the spin space, Cy, is the point
group generated by the symmetry planes of a lattice and ® represents the direct product.
Carrying out the usual group-theoretical analysis (see, e.g., Yurishchev (1989)), we come
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to a conclusion that the 16 x 16 transfer matrix (4) can be reduced owing to symmetry
Z, @ Cyy to a quasi-diagonal form with one subblock 5 x 3, four subblocks 2 x 2 and three
‘subblocks’ 1 x 1, i.e. ready-made eigenvalues.

The subblock of size 5 x 5 is connected with the fully symmetrical irreducible
representation of the group. Because of the Perron theorem, it contains the largest eigenvalue
of U, The basis vectors for this irmeducible representation are given as

¥ = (e + e16)/~2 Y = (e2 + e+ es + e+ e + ey + €14 + €15)/2v2
Vs=(eatep)/V2  Ya=(es+en)/V2Z Vs =(e;+ew)/V2

where

e =11,1,1,1) ex=11,1,1,-1) els=]—1,~1, -1, =1). (6)

Using these basis functions and utilizing (4), we find the matrix elements tEr,T"U;bj of
subblock 5 x 5. The secular equation of this subblock has a structure (and this is the
second key circumstance allowing the solution of the eigenvalue problem)

M —agdt + ad’ —aadl + o —a® =0. )
Here
a) = 2{1 + 4cosh(2K ) cosh(2K )l cosh(4K,) + 6 _ &
a2 = 32cosh(2K,) cosh(2K ,){cosh(4K ) cosh®(2K.) — 1]

+ 8[1 + cosh(4K ;) + cosh(4K )] sinh*(4K ) 9
o = 4sinh?(2K,). (10)

According to Sominskii (1967), an algebraic equation such as (7) is a reciprocal equation.
This property makes it possible 1o find the roots of our equation easily. As a result, the
largest eigenvalue of the transfer matrix (4) is equal to

}\-|=%f1+(:1'-":2“““2)”2 (an
with
ro=ia — o) + [fa + o) + o - @) (12)

Solving secular equations of second-order subblocks causes no difficulties. In this
issue, we obtain a complete set of eigenvalues. Sorting the eigenvalues, we seek out the
next largest eigenvalue of U;

A2 = {1+ exp[2(K; + K,)]} sinh(4K) + [{1 — exp[2(K, + K,}]}* sinh*(4K;)
+ 16exp[2(K, + K,)]sinh®(2K,)[/2. (13)

Note that it lies in the subblock built on basis functions which are symmetrical under all
purely spatial transformations of the group and antisymmetrical under those including the
spin inversion,

By Jx = J,, our solution is reduced to that of Kaufman (1949) for the Ising model on
a cylinder, if the number of chains in the last model is equal to four.

[t is also interesting to note that the above does not succeed in generalizing the model (3).
All attempts to include in the Hamiltonian new interactions {e.g., external field, additional
pair couplings or multiparticle forces) lead immutably to the destruction of the obvious
symmetry of Z; ® Cy, or the hidden algebraic symmetry (i.e. the reciprocal property of a
secular equation).
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2.2, Cluster 3 x 3 x o0

We shall consider a subsystem 3 x 3 x 0o with cyclic boundary conditions in both transverse
directions. This eliminates undesirable surface effecis and at the same time extends the
symmetry group down to Zy @ (T@®Ca,), where T is a group of transverse transiations
and ® implies a semidirect multiplication. The given symmetry allows one to reduce the
transfer matrix V, of size 512 x 512, to a block diagonal form in which the first- and second-
largest eigenvalues of the original matrix are located in different subblocks (V! and V@,
respectively), both having a dimension of 18 x 18. The open form of these subblocks is
given in the appendix. The extraction of dominant eigenvalues from V' and V% has
already been carried out by computer.

We return again to the calculation of the critical temperature, The estimates £T./J;
obtained by a numerical solution of transcendental equation (1) are collected in table 1.
By this, we also put the cyclic boundary conditions on the cluster 2 x 2 x oo, ie. simply
increase the interaction constants in transverse directions by a factor of 2: J, — 2.J; and

Jy — 2J,. In table 1, we have also inserted the critical temperature values for two limited
cases:

(i) J, =0, comesponding to the anisotropic two-dimensional Ising model for which the
exact phase transition temperature equation is known (Onsager 1944)

sinh(2J,/kT;) sinh(2J; /kT) =1 (14)

(ity J, = Jy, corresponding to the partly anisotropic three-dimensional Ising model
for which there exists sufficiently accurate estimates of T, (Navarro and de Jongh 1978,
Yurishchev and Sterlin 1991).

3. Discussion

One of the simplest ways to estimate the phase transition temperature in an Ising model is
the mean-field approximation (MFA):

(kTo)mea =200 + 4y + /). (15)

However, the accuracy is quite low (see table 2 where, for convenience of comparison, the
critical-temperature estimates found by various approximate methods have been given, as
well as the true values obtained from a solution of equation (14} and the precision numerical
values).

The state of things is somewhat corrected by an improved mean-field approximation
(IMFA), taking into account the short-range order effects (Faleiro Ferreira 1988). On
inspection of table 2, one can see that there are considerable erors, especially for the
strongly anisotropic systems.

The MFA can be considerably improved by placing the clusters in the mean field instead
of separate spins. A linear chain approximation (LCA) considered by Stout and Chisholm
(1962) when the one-dimensional Ising system is taken as a cluster leads to the equation

(kTe/J2dica = 2nexp(2J;/kTe) (16)

where n = (J; + J,}/J;. de Bruijn (1958) has shown that the solution of an equation such
as (16) is given by

(ch/-Iz)asympt = 2/““ ﬂ“] — In(ln 7?-1) + O[lﬂ(ln n—l)/ In I’jul]} (an
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Table 1. Normalized eritical temperature k7;/J; for the fully anisotropic three-dimensional
Ising model as a function of J. /J; and Jy/Jx.

d5f dx
1.0
0.0
. Navarro Yurishchev
I fdy Onsager (1944) 025 0350 0.75 and de Jongh (1978) and Stetlin (1991}
i.0 2.367 2.269 3277 3819 4275 4685 45106
0.9 2246 2153 3079 3575 3993 4.368
03 2120 2.034 2876 3325 3704 4045
0.7 1.987 1.909 2667 3.070 3.409 3714
0.6 1.848 1.779 2451 2.806 3.105 3.375 -
0.5 1.699 1,641 2226 2533 2791 34024 29286
0.4 1.540 1.492 1.988 2.247 2464 2.659 2580
0.3 1.365 1.328 17133 1943 2117 2273 2219
0.2 1167 1.141 1450 1608 1.738 1.854 1814
0.1 0.921 0905 1.109 1211 1.293 1366 1,343
0.09 0.891 0.877 1.069 1164 1.241 1.309%
008 0.859 0.846 1.026 1.115 1.187 1251
007 0826 03514 0982 1064 1,131 1.189
0.06 0790 0779 0534 (010 1.070 {1124
005 0751 0741 0.382 0951 1.006 1.054 1.041
004 0707 0698 0325 083 0535 09578
0.03  0.657 06350 0760 0.813 0.856 0.892
0.02  0.597 059 0683 0727 0761 0.791
0.01 0513  0.508 0.579 0611 0.637 0658 085
0.00% 0502 0498 0.565 0.596 0.621 0641 0.637
0.008 0.491 0486 0.551 (581 0.604 0.624 0.619
0.007 0478 0474 - 0.535 0564 0.586 0.604 0.600
0.006 0464 0460 0.518 0543 0.566 0.583 0.579
0.005 0449 0.445 0499 0.524 0544 0560 0.356
0.004 0431 0428 0478 0501 (0519 0534 0.531
0.003 0410 0407 0453 0474 0450 0503 0.500
0.002 0383 0.380 0421 0.439 0453 0465 0.462

Table 2. Critical temperature estirnates of the fully anisotropic three-dimensional Ising model
versus calculational method,

Jefdy =1 Jof b =107
Method J, =0 Jy=J: Jy=0 Jy=1J,
MEA 4 6 202 2.04
IMFA 3.230 4933 1.465 1487
LCA 3.526 5.686 0.590 0.699
ILCA 2.885 4,622 0.588 0.695
ELCA 2728 4.881 0.543 0.669
Table t 2.367 4,685 0.513 0.658
Exact 2.2691 45113 0.5089 0.65

when 1 — 0. Fisher (1967) established that equation (17) is asymptotically exact for
the Ising model. Although it qualitatively describes the logarithmically slow drop in the
critical temperature with increase in the coupling anisotropy, unfortunately this asymptotical
formula does not provide acceptable precision, even at high anisotropies. For example, by
Jy = Jy = 107%J, an error of deviation from the high-temperature sexies estimate equals
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21% and the error is 28% for the two-dimensional model (J, = 0) for the same value of
anisotropy (J;/J, = 1072).

During recent years a number of equations have been obtained for the critical
temperature of a fully anisotropic three-dimensional Ising model within the various
generalizations of the mean-field theory, as well as a variational approach (one of them—the
IMFA—we have mentioned already). Using an extended variational method and taking the
sum of linear Ising chains as an auxiliary Hamiltonian, Faleiro Ferreira and Silva (1982)
have found an equation for T; via the so-called extended linear chain approximation (ELCA).
The numerical solution of this equation shows that the ELCA perceptibly improves the LCA
{(see table 2); however, errors are still considerable, For instance, the critical point position
for the two-dimensional isotropic case is overstated by 20%.

Another new approach named by Faleiro Ferreira (1989) the improved linear chain
approximation (ILCA) is based upon the same auxiliary Hamiltonian but with another
variational principle and leads to better results only for the isotropic three-dimensional
case (this is observed in table 2).

da Silva et al (1984) have reported the calculation of a phase transition temperature
for the fully anisotropic three-dimensional Potts lattice, a particular case of which is the
Ising model, by the real-space renormalization group treatment. However, owing to the
finite size of spin blocks used, their estimates lose accuracy very rapidly with an increase
in coupling anisotropy. Already only by J; = J, = 107'J;, it follows the overestimate
kT./J. = 1.4552 which, even after carrying out the extrapolation on the rather artificial
scheme proposed by these workers, falls to k7./J; = 1.3986. This value surpasses the
high-temperature series value by 4.1%.

We now consider our results. The application of clusters makes it possible to take into
account the specific features of short-range order and, as a result, reduce the calculational
error. Therefore, it is not surprising that the finite-size scaling method with its hierarchy
of clusters increasing in growth allows us to determine the critical point of the Ising model
with more exactness than the approaches discussed above (see again table 2). A uniform
convergence (contrary to the ILCA) of the estimates with increase in lattice anisotropy is an
important quality of the approximation. Let us consider table 1. In the two-dimensional
isotropic limit (J, = 0 and J,/J; = 1), our calculation fixes the critical temperature with
an error of 4.3% (in the direction of overestimation). For J./J; — 0, this error decreases
continuously. This can be easily checked by making a comparison with the exact transition
temperature values presented in the next column. In particular, the value has a 1.8% error
by J./J. = 107, A similar situation arises in the three-dimensional case with J, = Jy.
Here our estimates are again in excess of the true values; the percentage error drops from the
maximum value of 3.8% in the fully isotropic case (J, = J, = J;) to, for comparison, 1.7%
for the J,/J; = 107! case. An analogous picture seems to be preserved in the intermediate
region 0 < Jy/J; < 1; by fixing J;/J;, the error smoothly moves between the limited
values corresponding to Jy/J; =0and J,/J; =1,

4. Conclusions

In the present paper the more qualitative estimates of critical temperature in the fully
anisotropic three-dimensional Ising lattice have been derived. These estimates yield the
upper bound everywhere and by J,/J; = constant the error for £T./J;, monotonically tends
to zero when J./J, — 0.

The accurate analytical solution has been obtained for an Ising model on the 2 x 2 x 0o
lattice with fully anisotropic couplings.
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The quasi-diagonalization has been carried out for the transfer matrix of the 3 x 3 x >
Ising model with a rectangular cross section. The expressions for the matrix elements
of subblocks containing the leading eigenvalues are given in detail. This permits one to

reproduce easily the results presented in the article; it could also be useful in considering
other problems.
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Appendix. Explicit form of subblocks V' and V%

The matrices V¢! and V® are symmetrical; therefore, it is sufficient to describe their upper
triangular parts:

AL zﬁ(z || cosh[(2s — 1)K, ]) expl3(mf +m)K, + 3(m] + mDK,] (AD)

=1
5

v =2 ‘/_(Zg'ﬂs'mh[(zs—1)K,])exp[%(m;‘+m§)Kx+%(m?+mj-’)Kyl (A2)
s=1

wherei £ j =1,2,...,18. The basis vectors are ordered with their lengths not decreasing:
n; =1{2,6,6,12,18, 18, 18, 18, 18, 36, 36, 36, 36, 36, 36, 36, 72, 12}. (A3)

The quantities m? and m? are equivalent to the reduced partial energies of spin configurations
in the ith vector. They are

= {9,9, _'3, '—39 S, 5; ]-s 1, _'3; I; Ia—3’51 —3) 1’_3a I, _3} (A4)
=1{9,-3,9,-3,5,1,5,1,-3, 1, 1, —=3,5,-3,1.1, -3} (AS)
Finally, the weight coefficients gs ! are given as follows:
o000t 1,201000 220200t 1,301000
2330000 3302001 1401000 2430000
34)30000 44)3-2001 1,5 00010 25)20100
3520100 4540200 5500801 1600100
26)-20010 36)-12000 46)-24000 5607020
66)60201 LC0100 27 -12000 M -20010
47 24000 5707020 6750400 1H60201
1810000 2802100 3802-100 48)—42000
58)-54000 6843200 784-3200 88)4-4001
19910000 29)-21000 39)-21000 4904-200
59)-54000 696-2100 79)6-2100 89)800-10
9914 -4001 ,10000100 2,100-12000 310)-12000
410)-32010 510007020 610050400 700050400
81006 -2100 910)4 -3200 10,100 110601 LINn01000
2In1-1100 311)30000 411022200 511)60300
61144010 711y -36000 811) —44-100 9,11)-52~-110
10,11y -88020 I,11)9-5301 LI2}01000 2,12)30000
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3,12)1-1100
712 -440140
11,12) 10 -4 40 0
3,13)-21000
7136 -2100
11,13 =77 -3140
2,14)-21000
6146 -2100
10,14} 12 —4200
14,143 —75 =2 1
415 -23-100
BI5)3 4200
12,15 -8 8 ~200
1,16)10000
516} ~54000
9,16)3 4200
13.16) 10 —6 200
1LID01000
51760300
9,17) —44 —100
131N -77-310
LI 199701
418)-31-110
818)5-3100
i218) =77 -310
16,18)9 =53 -1 0

4,12)2-=2200
812} -44 100
12,12)9 -5301
413 -42000
813)4-22-10
12,13) -126000
314 ~-10-110
TI4)2 ~4300
11,14y =126 000
L15)10000
51554000
9215)3-4200
13,15)8 4420
2,16 -21000
616)6-2100
10,16) 10 -5 300
14,16) 8 —4 4 ~2 0
21Mm1-1100
GIT)—44010
10,17y -7100190
HIN-T7T-310
Lig) 10000
518)~54000
918)4-22-10
13,18)10 -6200
17,18) —19 13 -3 10

512)60300
9152110
1,13)10000
513)-54000
9,13)5 3100
1313)3-75-21
414) -42000
8,14)4-22-10
1214) ~77-310
2,15)02-100
6,154 3200
10,15) 10 =530 0
14,15) 10 =620 0
31602 -100
7,16)4 3200
11,16) -8 8 —200
1516) 11 =42 —1 0
31711100
717 —44010
11,1710 ~4400
1517 -9 6 =210
2,18) 21000
618)6 —2100
10,18) 8 ~6400
14,18) 10 =620 0
18,18) 13 -137 -2 1.

6,12y -36000
10,12) 830290
213 =10—-110
613)2 -4300
10,13) 12 =42 00
1,14y10000
5,14y -54000
9,1415 3100
13,14) 10 =6 20 0
315 -21000
7,516 -2100
11,15) —10 4 =220
15,157 ~8201
4,16)-23 100
8,16)3 —4200
12,16) —10 4 =220
16,16/ 78201
41774-1100
817 -52-110
12T 10 4400
16,17 =96 ~21 0
318 -21000
7,18)6 2100
1,18 =77 =310
15,18)9-53 ~10

Using (A1)-(A5) and the above values for the weight coefficients, one can easily find
the expressions for the maitrix elements. For instance,

VIl =2 cosh(9K.) expl9( K, + K]

Vs = 2+/3[2 cosh(K.) + cosh(3K )] exp(K; + TKy)

Vigis = 2{13[sinh(K;) — sinh(3K,)] + 7 sinh(5K,) — 2sinh(7K,) + sinh(9K;)}
x exp[—=3(K, + K,)].
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