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Abstract The critical temperalure of a three-dimensional king model on a simple cubic lattice 
with different coupling strengths along all lhree spatial directions is calculated via the transfer 
matrix method and a fiNte.size scaling for L x L x m clusters ( L  = 2 and 3). The resulls 
obtained are compared with available calculations. An exact analytical solution is found for the 
2 x 2 x m lsing chain with fully Bnisolropic interactions (arbitmy Jz .  Jy and J*) .  

1. Introduction 

Great attention has been given to the critical temperature calculation of the three-dimensional 
Ising model, for the full time extent of its existence. The most considerable advances 
have been attained for the fully isotropic cubic lattice (Jx  = Jy  = .Iz). The calculations 
are steadily improving with time; the accuracy for the critical point value is down to 

error: K, = 0.2216595 & 0.0000026 (Ferrenberg and Landau 1991); Kc = 
0.221 6544 f 0.000001 0 (Livet 1991). 

The efficiency of progress is less for the partly anisotropic model when J, = Jy  # J,. 
TWO cases exist here: Jf = Jy J, (a quasi-two-dimensional model) and, inversely, 
J, = J y  Q J,  (a quasi-one-dimensional model). Using the high-temperature series, the 
critical temperature estimates have been obtained with 2 x  IO-’% error for the fully isotropic 
interactions ( J ,  = J y  = J,) and about in the two-dimensional limit ( J ,  = 0)  of the 
quasi-two-dimensional model (see Navarro and de Jongh (1978) and references therein). 
By intermediate-range interlayer couplings, the error of a phase transition temperature 
determination lies between these two extreme values. Conversely, in the quasi-one- 
dimensional case, the estimates based on the same high-temperature series rapidly deteriorate 
owing to the limited number of terms available in the series. As a result, one can find 
the critical temperatures only up to J,,,)/J, = IO-’ (with exactness in the one- to two- 
significant-figure range). In the quasi-one-dimensional case, the phase transition temperature 
has been calculated also by phenomenological renormalization of clusters (Yurishchev and 
Sterlin 1991). Inasmuch as the cluster geometry reflects the physical situation, this approach 
(conUary to the high-temperature series expansions) yields more precise results as the 
anisotropy of the quasi-one-dimensional system increases. By J x ( y ) / J z  = the critical- 
temperature position is determined here with an accuracy of about three significant figures. 

The difficulties are largest when the interactions are different along all three directions. 
Here calculations have been done by the real-space renormalization group method (da Silva 
et d 1984) and via various versions of the mean-field theory and variational principle (see 
Faleiro Ferreira (1988, 1989) and references therein). These results we discuss in detail in 
section 3 in comparison with our computations. 
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In this paper, the critical temperature of a three-dimensional king model, with fully 
anisotropic interactions, is calculated by the transfer mamx approach in combination with 
a finite-size scaling, i.e. by the phenomenological renormalization group method proposed 
by Nightingale (1976). As the clusters, we use infinitely long parallelepipeds L x L x 00 

with transverse scales L = 2 and 3. We succeeded in obtaining a rigorous solution for a 
lattice with L = 2. For the 3 x 3 x 03 lattice, we simplify the partial eigenvalue problem 
for the transfer matrix of 512th order. Using the symmetry, we reduce this problem to 
a determination of the largest eigenvalues of the two eighteenth-order matrices. Final 
calculations have already been made numerically. 

2 Calculation of the critical temperature 

Conforming with the phenomenological renormalization group theory, the critical 
temperature T, is a fixed point of an equation (see, for instance, the reviews of Nightingale 
(1982) and Barber (1983)): 

LKL(T~)  = L'Kr,(T,) ( 1 )  

where 

is the inverse correlation length in a cluster with characteristic size L. The quantities AI 
and A2 entering into (2) are the largest and next-largest eigenvalues, respectively, of the 
subsystem transfer matrix. Thus, the task is reduced to finding the dominant eigenvalues of 
transfer matrices. 

2.1. Cluszer 2 x 2 x 03 

Let us write the Hamiltonian for the cluster as 

H = - CLJr(Ul. iU2.;  + oj , ;~4, ; )  + J ~ ( u I , ; u ~ J  +%;U3,i) 
i 

+ Jz(ul.;ul,i+l + uz.i~z.;+l + u3,;u3.i+1 + u4,iu4,;+I)l. (3) 

The spin variables U = + 1 are located in sites of a lattice 2 x 2 x 03 which has a rectangular 
cross section and has the symmetry planes going through its axis and the middles of opposite 
sides. 

The transfer matrix U with elements 

+ $ K y ( u l u 4  f 0 2 0 3  + u;ui + fl$$ f Kz(ulU; + 020; t 0 3 0 ;  + u40.$] (4) 

(where K, = J , / k T .  K, = J J k T  and K, = J , / k T )  corresponds to the Hamiltonian (3). 
TO solve the eigenvalue problem of the transfer matrix (4). we use first the invariance 

property of the appropriate Hamiltonian with respect to the transformations of the group 
Z, @ C2"; where Z, is a group of global reflections in the spin space, Ctv is the point 
group generated by the symmetry planes of a lattice and @ represents the direct product. 
Carrying out the usual group-theoretical analysis (see, e.g., Yurishchev (1989)), we come 
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to a conclusion that the 16 x 16 transfer matrix (4) can be reduced owing to symmetry 
& 0 C2" to a quasi-diagonal form with one subblock 5 x 5 ,  four subblocks 2 x 2 and three 
'subblocks' 1 x I ,  i.e. ready-made eigenvalues. 

The subblock of size 5 x 5 is connected with the fully symmetrical irreducible 
representation of the group. Because of the Perron theorem, it contains the largest eigenvalue 
of U. The basis vectors for this irreducible representation are given as 

= (el + ex) / f i  

*3 = (e4 + e l 3 ) / f i  

where 

el = )1,1, 1,l) e2 = I l , l , l , - l )  ... e16 = I - I ,  -1, -1, -1). (6) 
Using these basis functions and utilizing (4), we find the matrix elements $,+U@, of 
subblock 5 x 5. The secular equation of this subblock has a structure (and this is the 
second key circumstance allowing the solution of the eigenvalue problem) 

$2 = (ez + e3 + e5 + e8 + e9 + e12 + e14 + e l s ) / ~ 5  

+q = (e6 + el l ) / f i  
( 5 )  

*S = (e7 + e l o ) / f i  

A S - a ~ h 4 + a ~ b 3 - ~ a ~ A 2 + ~ 3 a ~ h - ~ 5 = 0 .  (7) 

(8) 

Here 

al = 2[1 + 4 cosh(2KJ cosh(2Ky)l cosh(4Kz) + 6 

a2 = 32cosh(2KX) cosh(2Ky)[cosh(4K,)cosh2(2K,) - 11 
+ 8[ I + cosh(4Kz) + cosh(4K,)] sinh2(4K,) (9) 

(Y = 4sinh2(2K,). (10) 
According to Sominskii (1967). an algebraic equation such as (7) is a, reciprocal equation. 
This property makes it possible to find the roots of our equation easily. As a result, the 
largest eigenvalue of the transfer matrix (4) is equal to 

( 1 1 )  1 2 2 1/2 hl = $1 + (srl - (Y ) 

r l = i a  2 (  I -a)+ [+(a, + ( Y ) ~ + ( Y ~ - ~ Z ~ ~ / * .  

with 

(12) 
Solving secular equations of second-order subblocks causes no difficulties. In this 

issue, we obtain a complete set of eigenvalues. Sorting the eigenvalues, we seek out the 
next largest eigenvalue of U: 
hz = (1  + exp[2(K, + Ky)]]sinh(4K2) + [[l - exp[2(K, + Ky)1)2sinh2(4K,) 

t Ibexp[Z(K, + K,)] sinh2(2K,)~'/*. 113) 
Note that it lies in the subblock built on basis functions which are symmetrical under all 
purely spatial transformations of the group and antisymmetrical under those including the 
spin inversion. 

By J, = J Y ,  our solution is reduced to that of Kaufman (1949) for the Ising model on 
a cylinder, if the number of chains in the last model is equal to four. 

It is also interesting to note that the above does not succeed in generalizing the model (3). 
All attempts to include in the Hamiltonian new interactions (e.g., extemal field, additional 
pair couplings or multiparticle forces) lead immutably to the destruction of the obvious 
symmetry of Z, @ Czv or the hidden algebraic symmehy (i.e. the reciprocal property of a 
secular equation). 
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2.2. Cluster 3 x 3 x 03 

We shall consider a subsystem 3 x 3 x CO with cyclic boundary conditions in both transverse 
directions. This eliminates undesirable surface effects and at the same time extends the 
symmetry group down to 21 8 (TOC,,), where T is a group of transverse translations 
and @ implies a semidirect multiplication. The given symmetry allows one to reduce the 
transfer matrix V, of size 512 x 5 12, to a block diagonal form in which the first- and second- 
largest eigenvalues of the original matrix are located in different subblocks 01"' and V'", 
respectively), both having a dimension of 18 x 18. The open form of these subblocks is 
given in the appendix. The extraction of dominant eigenvalues from VC" and V'" has 
already been carried out by computer. 

We retum again to the calculation of the critical tempemure. The estimates kT,/J, 
obtained by a numerical solution of transcendental equation ( I )  are collected in table 1. 
By this, we also put the cyclic boundary conditions on the cluster 2 x 2 x w, i.e. simply 
increase the interaction constants in transverse directions by a factor of 2 Jx -+ 2J, and 
Jy -+ 25,. In table I ,  we have also inserted the critical temperature values for two limited 
cases: 

(i) J ,  = 0, corresponding to the anisotropic two-dimensional Ising model for which the 
exact phase transition temperature equation is known (Onsager 1944) 

sinh(2Jx,lkTc) sinh(2Jz,lkTc) = 1 (14) 

(ii) JI = J y ,  corresponding to the partly anisotropic three-dimensional king model 
for which there exists sufficiently accurate estimates of Tc (Navarro and de Jongh 1978, 
Yurishchev and Sterlin 1991). 

3. Discussion 

One of the simplest ways to estimate the phase transition temperature in an king model is 
the mean-field approximation (MFA): 

(15) 

However, the accuracy is quite low (see table 2 where, for convenience of comparison, the 
critical-temperature estimates found by various approximate methods have been given, as 
well as the true values obtained from a solution of equation (14) and the precision numerical 
values). 

The state of things is somewhat corrected by an improved mean-field approximation 
(IMFA), taking into account the short-range order effects (Faleiro Ferreira 1988). On 
inspection of table 2, one can see that there are considerable errors, especially for the 
strongly anisotropic systems. 

The MFA can be considerably improved by placing the clusters in the mean field instead 
of separate spins. A linear chain approximation (LCA) considered by Stout and Chisholm 
(1962) when the onedimensional Ising system is taken as a cluster leads to the equation 

( k T c I J h A  = 21~exp(2J,/kTJ (16) 

where IJ = ( J ,  + J , ) /J , .  de Bruijn (1958) has shown that the solution of an equation such 
as (16) is given by 

(kTc)MFA = X J x  + Jy 4- Jr). 

( ~ T J J A ~ ~ ~ ,  = 2/(1n q-' - In(In v - ' )  + O[ln(In q - ' ) /  In IJ-']} (17) 
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Table 1. Normalized critical temperature kT,/J, for the fully aniroWoopic three-dimensional 
king model af a function of Jx /J .  and J y / J r .  

0.0 

J x I J z  Onsager (1944) 
1.0 2.367 2.269 
0.9 2.246 2153 
0.8 2.120 2.034 
0.7 1.987 1.909 
0.6 1.848 1.779 
0.5 1.699 1.641 
0.4 1.540 1.492 
0.3 1.365 1.328 
0.2 1.167 1.141 
0.1 0.921 0.905 
0.09 0.891 0.877 
0.08 0.859 0.846 
0.07 0.826 0.814 
0.06 0.790 0.779 
0.05 0.751 0.741 
0.04 0.707 0.698 
0.03 0.657 0.650 
0.02 0.597 0.590 
0.01 0.513 0.508 
0.009 0.502 0.498 
0.008 0.491 0.486 
0.007 0.478 0.474 
0.m 0.464 0.460 
0.005 0.449 0.445 
0.004 0.431 0.428 
0.003 0.410 0.407 
0.002 0383 0.380 

0.25 

3.277 
3.079 

- 

2.876 
2.667 
2.451 
2.226 
1.988 
1.733 
1.450 
1.109 
1.069 
1.026 
0.982 
0.934 
0.882 
0.825 
0.760 
0.683 
0.579 
0.565 
0.551 
0.535 
0.518 
0.499 
0.478 
0.453 
0.421 

1 .o 
Navarm Yurishchev 

0.50 0.75 and de Jon@ (1978) and Sterlin (1991) 

3.819 4275 4.685 45106 
3.575 3.993 4.368 
3.325 
3.070 
2806 
2.533 
2.247 
1.943 
1.508 
1.211 
1.164 
1.115 
1.064 
1.010 
0.951 
0.886 
0.813 
0.727 
0.61 1 
0.596 
0.581 
0.564 
0.545 
0.524 
0.501 
0.474 
0.439 

3.704 
3.409 
3.105 
2.791 
2.464 
2.117 
1.738 
1.293 
1.241 
1.187 
1.131 
1.070 
1.006 
0.935 
0.856 
0.761 
0.637 
0.621 
0.604 
0.586 
0.566 
0.544 
0.519 
0.490 
0.453 

4.045 
3.714 
3.375 
3.024 
2.659 
2173 
1.854 
1.366 
1.309 
1251 
1.189 
1.124 
1.054 
0.918 
0.892 
0.791 
0.658 
O H 1  
0.624 
0.604 
0.583 
0560 
0534 
0503 
0.465 

2.9286 
2.580 
2.219 
1.814 
1.343 

1.041 

0.65 
0.637 
0.619 
0.600 
0.579 
0.556 
0.531 
0.500 
0.462 

Table 2. Critical temperature estimates of the fully anisotropic lhrec-dimensional king model 
versus calculational method. 

J x / J ,  = 1 Jx/Jz  = 10.' 

Method Jr = O  Jy  = Js Jr = 0 Jy  = Jx 

MFA 4 6 2.02 2.04 
IMFA 3.230 4.933 1.465 1.487 
LCA 3.526 5.686 0.590 0.699 
lLCA 2.885 4.622 0,588 0.695 
EL-3 2.728 4.881 0.543 0.669 
Table 1 2.367 4.685 0.513 0.658 
Exact 2.2691 4.5115 0.5089 0.65 

when q + 0. Fisher (1967) established that equation (17) is asymptotically exact for 
the Ising model. Although it qualitatively describes the logarithmically slow drop in the 
critical temperature with increase in the coupling anisotropy, unfortunately this asymptotical 
formula does not provide acceptable precision, even at high anisotropies. For example, by 
J, = J, = IO-'J, an error of deviation from the high-temperature series estimate equals 



8080 M A Yurishchev 

21% and the error is 28% for the two-dimensional model (Jy = 0) for the same value of 
anisotropy (J ,  f J z  = 

During recent years a number of equations have been obtained for the critical 
temperature of a fully anisotropic three-dimensional Ising model within the various 
generalizations of the mean-field theory, as well as a variational approach (one of them-the 
IMFA-we have mentioned already). Using an extended variational method and taking the 
sum of linear Ising chains as an auxiliary Hamiltonian, Faleiro Ferreira and Silva (1982) 
have found an equation for T, via the so-called extended linear chain approximation (ELCA). 
The numerical solution of this equation shows that the ELCA perceptibly improves the LCA 
(see table 2); however, errors are still considerable. For instance, the critical point position 
for the two-dimensional isotropic case is overstated by 20%. 

Another new approach named by Faleiro Ferreira (1989) the improved linear chain 
approximation (ILCA) is based upon the same auxiliary Hamiltonian but with another 
variational principle and leads to better results only for the isotropic threedimensional 
case (this is observed in table 2). 

da Silva er a1 (1984) have repaed the calculation of a phase transition temperature 
for the fully anisotropic three-dimensional Potts lattice, a particular case of which is the 
Ising model, by the real-space renormalization group treatment. However, owing to the 
finite size of spin blocks used, their estimates lose accuracy very rapidly with an increase 
in coupling anisotropy. Already only by J, = Jy  = IO-'J,, it follows the overestimate 
kT,/J,  = 1.4552 which, even after carrying out the extrapolation on the rather artificial 
scheme proposed by these workers, falls to kT,/J,  = 1.3986. This value surpasses the 
high-temperature series value by 4.1%. 

We now consider our results. The application of clusters makes it possible to take into 
account the specific features of short-range order and, as a result, reduce the calculational 
error. Therefore, it is not surprising that the finite-size scaling method with its hierarchy 
of clusters increasing in growth allows us to determine the critical point of the Ising model 
with more exactness than the approaches discussed above (see again table 2). A uniform 
convergence (contrary to the ILCA) of the estimates with increase in lattice anisotropy is an 
important quality of the approximation. Let us consider table 1. In the twodimensional 
isotropic limit (Jy = 0 and J x / J 2  = 1). our calculation fixes the critical temperature with 
an error of 4.3% (in the direction of overestimation). For J, f J, -+ 0, this error decreases 
continuously. This can be easily checked by making a comparison with the exact transition 
temperature values presented in the next column. In particular, the value has a 1.8% error 
by J, /J ,  = IO-'. A similar situation arises in the three-dimensional case with Jz  = J y .  
Here our estimates are again in excess of the true values; the percentage error drops from the 
maximum value of 3.8% in the fully isotropic case (J, = J y  = J z )  to, for comparison, 1.7% 
for the J, f J, = IO-' case. An analogous picture seems to be preserved in the intermediate 
region 0 e JJJX e 1; by fixing JJJ,, the error smoothly moves between the limited 
values corresponding to Jy f Jx = 0 and Jy f JI = 1. 

4. Conclusions 

In the present paper the more qualitative estimates of critical temperature in the fully 
anisotropic three-dimensional king lattice have been derived. These estimates yield the 
upper bound everywhere and by Jy f JJ = constant the error for kT, f J, monotonically tends 
to zero when J, f J 2  -+ 0. 

The accurate analytical solution has been obtained for an Ising model on the 2 x 2 x 03 
lattice with fully anisotropic couplings. 
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The quasi-diagonalization has been c a n i d  out for the transfer matrix of the 3 x 3 x m 
I s i g  model with a rectangular cross section. The expressions for the matrix elements 
of subblocks containing the leading eigenvalues are given in detail. This permits one to 
reproduce easily the results presented in the article; it could also be useful in considering 
other problems. 
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Appendix. Explicit form of subblocks V“) and V”’ 

The matrices V“’ and v‘” are symmetrical; therefore, it is sufficient to describe their upper 
triangular parts: 

where i d j = 1,2, . . . , I S .  The basis vectors are ordered with their lengths not decreasing: 

ni = {2,  6,6,12,18,18,18,18,18,36,36,36,36,36,36,36,72,72). (A3) 

The quantities my and mf are equivalent to the reduced partial energies of spin configurations 
in the ith vector. They are 

m~=19,9,-3,-3,5,5,1,l,-3,1,1,-3,5.-3,1,-3,1,-3) (A4) 

mp = 19, -3,9, -3.5, 1,5, 1, -3, 1, -3.1, -3.5, -3, I ,  1, -3). (As) 

Finally, the weight coefficients gj‘j) are given as follows: 
1.1) 0 0 0  0 I 12) 0 I O  0 0  2.2) 0 -2 0 0 I 
2.3) 3 0 0 0 0 3,3) 0 -2 0 0 1 
3.4) 3 0 0 0 0 4.4) 3 -2 0 0 1 
35) 2 0 1 0 0 4.5) 4 0 2 0 0 
2b) -2 0 0  I 0 3.6) -1 2 0 0 0 
6.6) 6 0 2 0 1 1.7) 00 1 0 0 
4.7) -2 4 0 0 0 5,7) 0 7 0 2 0 
1.8) 1 0  0 0  0 2.8) 0 2 -1 0 0 
5.8) -5 4 0 0 0 6.8) 4 -3 2 0 0 
1.9) 1 0 0 0 0 29) -2 1 0 0  0 
5.9) -5 4 0 0 0 6.9) 6 -2 1 0 0 
9.9) 4 -4 0 0 I 1.1O)OO 1 0 0  
4.10) -3 2 0 1 0 5.10) 0 7 0 2 0 
&lo) 6 -2 I 0 0 9.10) 4 -3 2 0 0 
2.11) I -1 I 0 0 3J1) 3 0 0  0 0 
6 ,11) -44010 7.11)-36000 8.11)-44-100 

1.4) 0 1 0 0 0 
1.5) 0 0 0 1 0 
5 . 3 0 0  8 0 1 
4.6) -2 4 0 0 0 
2.7) -1  2 0 0 0 
6.7) 5 0 4 0 0 
3.8) 0 2 -1 0 0 
7,s) 4 -3 2 0 0 
3.9) -2 1 0 0 0 
7.9) 6 -2 1 0 0 
210) -1 2 0 0 0  
6.10) 5 0 4 0 0 
10.10) 11 0 6 0 I 
4.11) 2 -2 2 0 0 

10,ll) -8 8 0 2 0 11,11)9 -5 3 0  1 1J2) 0 1 0 0 0 

L3)O 1 0 0 0 
2.4) 3 0 0 0 0 
2 5 ) Z O  1 0 0  
1.6) 0 0 1 0 0 
5.6) 0 7 0 2 0 
3.7) -2 0 0 1 0 
1.7) 6 0 2 0 1 
4.8) -4 2 0 0 0 
8.8) 4 -4 0 0 1 
4.9) 0 4 -2 0 0 
8,9) 8 0 0 -1 0 
3,IO) -1  2 0 0 0 
7.10) 5 0 4 0 0 
1.11)O 1 0 0 0  
5,11)603 0 0  
9.11) -5 2 -1  I O  
212) 3 0 0 0 0  
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3.12)1-1100 
7.12) -4 4 o I a 
11.12) IO -4 4 0 0 
3.13) -2 I 0 0 0 
7,13) 6 -2 I 0 0 
11.13) -7 7 -3 I O  . .  
2.14) -2 I 0 0 0 
6.14) 6 -2 1 0 0 
10.14) 12 -4 2 0 0 
14.14) 3 -7 5 -2 I 
4.15) -2 3 -1 0 0 
8.15) 3 -4 2 0 0 
12.15) -8 8 -2 0 0 
1.16) 1 0 0 0 0 
5,16) -5 4 0 0 0 
9,16) 3 -4 2 0 0 
13.16) 10 -6 2 0 0 
1,17)'0 1 0 0 0 
5.17) 6 0 3 0 0 
9.17) -4 4 -1 0 0 
13.1'0 -7 7 -3 I O  
17.17) 19 -9 7 0 1 
4.18) -3 1 -1 I O  
8,18) 5 -3 I 0 0 
12.18) -7 7 -3 1 0 
16.18) 9 -5 3 -1  0 

4,121 2 -2 2 0 0 
8.12) -4 4 -I o o 
12.12) 9 -5 3 0 1 
4.13) -4 2 0 0 0 
8.13) 4 -2 2 -1 0 
12.33) -12 6 0 0 0 
3.14) - 1  0 -1  1 0  
7.14) 2 -4 3 0 0 
11.14) - 1 2 6 0 0 0  
1.15) 1 0 0 0 0  
5.15) -5 4 0 0 0 
9.15) 3 -4 2 0 0 
13,15) 8 -44-20 
116) -2 1 0 0 0 
6.16) 6 -2 1 0 0 
10.16) 10 -5 3 0 0 
14.16) 8 -4 4 -2 0 
2.17) 1 -1 1 0 0 
6.17) -4 4 0 I 0 
10.17) -7 10 0 I 0 
14.17) -7 7 -3 IO 
1.18) 1 0 0 0 0 
5.18) -5 4 0 0 0 
9.18) 4 -2 2 -1 0 
13.18) 10 -6 2 0 0 
17.18) -19 13 -3 I O  

5,12) 6 0 3 0 0 
9,12) -5 2 -I 1 0  
1.13) 1 0 0 0 0  
5.13) -5 4 0 0 0 
9.13) 5 -3 1 0 0 
13.13) 3 -7 5 -2 1 
4.14) -4 2 0 0 0 
8.14) 4 -2 2 -1 0 
12.14) -7 7 -3 1 0 
2J5) 0 2 -1 0 0 
615) 4 -3 2 0 0  
10.15) 10 -5 3 0 0 
14,IS) IO -6 2 0  0 
3,16)02 -1  0 0  
7,16) 4 -3 2 0 0 

IS,l6) II -4 2 - 1  0 
3,17) 1 -1 1 0 0  
7.17) -4 4 0 1 0 
11.17) 1 0 - 4 4 0 0  
15.17) -9 6 -2 I 0 
2.18) -2 1 0 0 0 
6.18) 6 -2 1 0 0 
10,18) 8 -6 4 0 0 
14.18) 10 -6 2 0 0 
18.18) 13 -13 7 -2 1, 

I I . I ~ ) - ~ ~ - ~ o o  

6,12) -3 6 0 0 0 

2.13) -1  0 -I 1 0 
6.13) 2 -4 3 0 0 
10.13) 12 -4 2 0 0 
1.14) 1 0 0  0 0 
5.14) -5 4 0 0 0 
9.14) 5 -3 1 0 0 
13.14) 10 -6 2 0 0 
3.15) -2 1 0 0 0 
7,15) 6 -2 1 0 0 
11.15) -10 4 -2 2 0 
15.15) 7 -8 2 0 1 
4,16) -2 3 -1 0 0 
8,16) 3 -4 2 0 0 
12.16) -10 4 -2 2 0 
16.16) 7 -8 2 0 I 
4.17) 4 -1 1 0 0 
8.17) -5 2 -1 I O  
12.17) 10 -4 4 0 0 
16.17) -9 6 -2 I 0 
3.18) -2 1 0 0 0 
7.18) 6 -2 I 0 0 
11.18) -7 7 -3 I O  
IS,l8) 9 -5 3 - 1  0 

10.12) -a a 0 2 o 

Using (Al t (A5)  and the above values for the weight coefficients, one can easily find 
the expressions for the matrix elements. For instance, 
V;;' = 2 cosh(9K,) exp[9( K ,  + K , ) ]  

Vi;' = 24?[2cosh(K,) + cosh(5K,)]exp(K, + 7K,) 

V$s = 2[13[sinh(K,) - sinh(3KZ)1 + 7sinh(5KZ) - 2sinh(7KZ) fsinh(9K,)] 

x exp[-3(Kx + KY)L 
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